China Professional CZPT V-Belt Sb42 for Sale with high quality

Product Description

Product Description

KUBOTA 688Q COMBINE SPARE PARTS V-BLET

Specifications
SB-42  W600 CZPT COMBINE PARTS BANDO V BELT
KUBOTA ORIGINAL V BELT
KUBOTA WRAPPED V BELT

 

We can offer the following V-BELTS
ITEM NO. PART NO. QUALITY LEVEL BRAND ITEM NO. PART NO. QUALITY LEVEL BRAND
1 SB26 W600 BRAND 29 SB34 W800 BRAND
2 SB37 W800 BRAND 30 SB35 W800 BRAND
3 SB38 W800 BRAND 31 SB36 W800 BRAND
4 SB41 W800 BRAND 32 SB53.5 W800 BRAND
5 SB42 W800 BRAND 33 SB58 W800 BRAND
6 SB43 W800 BRAND 34 SB58 W600 BRAND
7 SB44 W800 BRAND 35 SB110 W800 BRAND
8 SB45 W800 BRAND 36 SC104(B) W800 BRAND
9 SB46 W800 BRAND 37 SC115(B) W800 BRAND
10 SB47 W800 BRAND 38 SC122 W800 BRAND
11 SB48 W800 BRAND 39 SC124 W800 BRAND
12 SB49 W800 BRAND 40 SC126 W800 BRAND
13 SB50 W800 BRAND 41 SC71 W800 BRAND
14 SB52 W800 BRAND 42 SC88 W800 BRAND
15 SB55 W800 BRAND 43 SC115(B) W600 BRAND
16 SB56 W800 BRAND 44 SC136 W600 BRAND
17 SB68 W800 BRAND 45 SC215 W600 BRAND
18 SB69 W800 BRAND 46 SC55 W600 BRAND
19 SB72 W800 BRAND 47 LB43 W600 BRAND
20 SB91 W800 BRAND 48 LB44 W600 BRAND
21 SC104(B) W600 BRAND 49 LB45 W600 BRAND
22 SC124 W600 BRAND 50 LB47 W600 BRAND
23 SC55 W800 BRAND 51 LB48 W600 BRAND
24 SC79 W600 BRAND 52 LB49 W600 BRAND
25 LB42 W600 BRAND 53 LB50 W600 BRAND
26 LB46 W800 BRAND 54 LB52 W600 BRAND
27 SB26 W800 BRAND 55 LB55 W600 BRAND
28 SB30.5 W800 BRAND 56 LB72 W600 BRAND

 

 Our Products
We are HangZhou FOREIGN MACHINERY PARTS CO., LTD.
We specialized in CZPT spare parts, CZPT machine ( kubota harvester, kubota  transplanter, CZPT tractor).
MACHINE MODEL: 488, 588I, 688Q, 788, 888, DC60, DC68G, DC70, DC95, 704K, 854 ,954, 1004, NSPU68C, NSPU88C, SPW48/68C
KUBOTA machine and Spare Parts  are popular in Philippines, Tailand, Vietnam and Sri Lanka and other countries. So glad to talk with you about Different CZPT machines and Spare Parts
 
We sell many kinds of agricultural machines, machinery parts, engine parts, combine parts,tractor parts and so on. Our products brands include KUBOTA, YANMAR, Cahngfa, SNH, YTO, Xihu (West Lake) Dis. Feng, and so on.This year we have developed many new products including mini combine harvester, mini rice, reaper, mini combine parts, balers, tubers excavators, rotary tillers and other machines with different functions.
 
 TRADE TERMS:

Price terms FOB office
Delivery terms time: after 15 days
ways: 1.Ship by Express.(DHL.TNT.UPS.FEDEX)
             2.Ship by Air express to airport
             3.Ship by sea
Payment Item T/T ,Western Union, L/C, B/L
Port of Shipment HangZhou, China
Packing close package to make shipment safer and suitable for import and export.
NOTE: amend accordng to your demand!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: V-Blet
Usage: Harvester
Material: Rubber
Power Source: Diesel
After-sales Service: Supply
Warranty: Supply

v belt

Are there any specific guidelines for aligning pulleys and V-belts?

Proper alignment between pulleys and V-belts is essential to ensure smooth operation, minimize wear, and maximize the efficiency of the belt drive system. Here are some specific guidelines for aligning pulleys and V-belts:

  1. Parallel Alignment:
  2. The pulleys should be aligned parallel to each other, meaning that the axes of the pulleys should be in the same plane. This ensures that the V-belt runs straight and evenly between the pulleys. Misalignment can cause the belt to run at an angle, leading to increased wear and reduced efficiency.

  3. Angular Alignment:
  4. In addition to parallel alignment, the pulleys should be aligned angularly. This means that the pulley faces should be perpendicular to the belt’s direction of travel. Angular misalignment can cause the belt to twist and create uneven tension, resulting in increased wear and potential belt failure.

  5. Alignment Tools:
  6. To achieve proper alignment, various alignment tools can be used, such as straightedges, laser alignment tools, or alignment software. These tools help in measuring and adjusting the alignment of pulleys, ensuring precise parallel and angular alignment.

  7. Adjustment Methods:
  8. To adjust the alignment of pulleys, different methods can be employed. Common adjustment methods include shimming, moving the pulley on its shaft, or using adjustable pulleys. The specific method depends on the type of pulley and the adjustment capabilities of the system.

  9. Regular Inspections:
  10. Regular inspections are crucial to identify and correct any misalignment issues promptly. Inspect the pulleys visually and check for any signs of misalignment, such as uneven belt wear, belt tracking issues, or abnormal belt noise. If misalignment is detected, take corrective measures to realign the pulleys.

  11. Manufacturer Recommendations:
  12. Always refer to the manufacturer’s guidelines and specifications for pulley alignment. Manufacturers often provide specific alignment tolerances and recommendations for their products, considering factors such as belt type, load, and operating conditions. Follow these recommendations to ensure proper alignment and optimize the performance of the belt drive system.

By following these guidelines for aligning pulleys and V-belts, you can minimize wear, reduce the risk of belt failure, and maximize the efficiency and lifespan of the belt drive system.

v belt

What are the key differences between V-belts and other types of power transmission belts?

V-belts are a popular type of power transmission belts, but they differ from other types of belts in terms of design, construction, and specific applications. Here are the key differences:

1. Belt Profile:

V-belts have a trapezoidal or V-shaped cross-sectional profile, which gives them their name. This profile allows the belts to fit securely into V-shaped pulleys, providing effective power transmission and grip. Other types of belts, such as flat belts or timing belts, have different profiles suited for specific applications.

2. Power Transmission Method:

V-belts transmit power through frictional forces between the belt and the pulleys. As the belt wraps around the pulleys, the friction between the belt and the pulley surfaces allows the transfer of torque and power. In contrast, other belts, like timing belts or chain drives, use toothed profiles or interlocking mechanisms to transmit power, providing precise synchronization and higher torque transmission.

3. Load Capacity:

V-belts are designed to handle moderate to high loads, making them suitable for a wide range of applications. However, certain applications with heavier loads may require specialized heavy-duty V-belts or alternative belt types, such as synchronous belts or chain drives, which offer higher load-carrying capacities.

4. Speed Range:

V-belts are suitable for a broad speed range, but their limitations may vary depending on the specific design, material, and construction. Traditional V-belts may have speed limitations at extremely high speeds due to centrifugal forces and heat generation. High-speed V-belts or narrow V-belts are available for applications that require higher speeds. In contrast, timing belts and synchronous belts are designed for precise speed control and are commonly used in applications with strict speed requirements.

5. Tensioning and Maintenance:

V-belts require periodic tensioning to maintain proper grip and power transmission efficiency. Tensioning is typically achieved through manual adjustment or automatic tensioners. Other types of belts, such as timing belts or chain drives, often have fixed tensioning systems and require less frequent maintenance.

6. Noise and Vibration:

V-belts generally operate with lower noise and vibration levels compared to other types of belts, such as chain drives. The design and frictional nature of V-belts contribute to smoother operation and reduced noise generation, making them suitable for applications where noise and vibration control is important.

7. Applications:

V-belts are widely used in various applications, including industrial machinery, automotive systems, HVAC systems, and power transmission in general. They are versatile and can accommodate different power requirements. Other belt types, such as timing belts, are commonly used in precision positioning, robotics, or applications that require synchronous motion.

Overall, V-belts offer reliable and cost-effective power transmission for a wide range of applications. However, the selection of the appropriate belt type depends on factors such as load requirements, speed range, precision, noise considerations, and specific application needs.

v belt

How do you properly install and tension a V-belt for optimal performance?

Proper installation and tensioning of a V-belt are crucial for achieving optimal performance and ensuring its longevity. Here are the steps to properly install and tension a V-belt:

  1. Select the appropriate V-belt: Determine the correct V-belt size and type based on the application requirements, including pulley diameters, power transmission needs, and environmental factors.
  2. Clean the pulleys: Ensure that the pulleys are clean and free from any contaminants, such as dirt, debris, or oil. Clean the pulley grooves using a brush or compressed air to ensure proper belt grip.
  3. Inspect the pulleys: Check the pulleys for any signs of wear, damage, or misalignment. Replace or repair any damaged or worn-out pulleys before proceeding with the installation.
  4. Place the V-belt on the pulleys: Position the V-belt on the pulleys, ensuring that it is properly seated in the pulley grooves. Make sure the belt is correctly aligned with the pulleys and is not twisted or kinked.
  5. Adjust the center distance: If necessary, adjust the center distance between the driving and driven pulleys to the recommended specifications provided by the manufacturer. This ensures proper belt tension and alignment.
  6. Tension the V-belt: The correct tension is crucial for optimal V-belt performance. Use a tension gauge to measure the belt’s tension. Follow the manufacturer’s guidelines or recommended tension specifications for the specific V-belt type and application.
  7. Apply tension gradually: Apply tension to the V-belt gradually and evenly. Avoid sudden or excessive tensioning, as it can lead to belt damage or pulley misalignment. Follow the recommended tensioning procedure provided by the manufacturer.
  8. Check the belt tension: After tensioning the belt, recheck the tension using a tension gauge. Ensure that the tension falls within the recommended range for the specific V-belt type and application. Adjust the tension if necessary.
  9. Verify alignment: Confirm that the pulleys are aligned properly. Check for any misalignment or belt tracking issues. Make adjustments as required to ensure the belt runs smoothly and centrally on the pulleys.
  10. Perform a test run: After installation and tensioning, perform a test run of the V-belt system. Monitor the belt’s performance, including proper grip, minimal vibration, and absence of noise. Address any issues or abnormalities promptly.

It is important to refer to the manufacturer’s guidelines and specifications for the specific V-belt type and application. They may provide additional instructions or considerations for installation and tensioning.

By following these steps and adhering to the manufacturer’s recommendations, you can ensure the proper installation and tensioning of a V-belt, leading to optimal performance, reduced wear, and extended belt life.

China Professional CZPT V-Belt Sb42 for Sale   with high quality China Professional CZPT V-Belt Sb42 for Sale   with high quality
editor by CX 2024-03-24