Tag Archives: agricultural harvester

China Best Sales Agricultural Harvester V Belt for CZPT Spare Parts a 3-axle vehicle

Product Description

Packaging & Delivery

Package Size 10*5*3CM
Package Gross Weight 0.5KG

Application

Company Profile

Cavwo is a professional manufacturer specializing in trailer suspension parts and truck chassis parts, which is located in HangZhou, ZheJiang , China. Built in 1997, we have a 20, 000 square meters factory, advanced production line equipment, excellent production, and a technical team. The company mainly deals with Leaf Springs, Air Springs, Xihu (West Lake) Dis. Arms, Shock Absorbers, Trailer Suspension, Axles, Brake Drums, Brake Linings, Steel Wheels, Tires, and other products. Since its establishment, the company has always focused on the research and development and operation of truck parts and components, with a variety of operating characteristics and the principle of small profits and high sales, favored by the majority of customers.
The company’s sales of trailer suspension parts and truck chassis parts have covered dozens of countries and regions in South America, North America, Europe, Asia, Africa, and Oceania.
The company advocates “make the work effective, make the staff have achievements”, focuses on staff training and development, constantly introduces advanced management concepts, optimizes and innovates the management mode, reasonably allocates resources, improves the team’s efficiency, and helps the staff to realize their self-worth.
The company will always adhere to the values of “responsibility & win-win”, not obsessed with ineffective competition, but only focus on the pursuit of quality and customer satisfaction, and take action to fulfill the commitment and contribution to society so that Cavwo becomes a respected brand in the global automotive aftermarket.

FAQ
Q1:What’s the process of purchasing orders from you?
A:1.Send Us Your Specific Demand,Such As Oem Numbers, Photos, Trailer Models,Ect. 
   2.Confirm Our Quotation With Photos And Other Detials.
   3.Negotiate About All Details You Need: Packing, Delivery Terms,Warranty, Ect. 
   4.Sign The Contract For The Payment,We Will Make The Production On Time.

Q2: How about the quality of your product?
A: Our products are certified to ISO9001, TS16949 international quality standards. 

Q3:Could we print our own logo or label on the springs?
A: Yes, you can. We support logo print & label print & stamping.

Q4. How about your delivery time?
A: Generally, it will take 20 to 30 days after receiving your advance payment. The specific delivery time depends
on the items and the quantity of your order.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Material: Rubber
Type: Traction Belt
Color: Black
Range: 550-12000mm
Customization:
Available

|

Customized Request

v belt

How do you calculate the power rating and speed capacity of a V-belt system?

Calculating the power rating and speed capacity of a V-belt system involves considering various factors such as belt type, pulley dimensions, belt tension, and speed. Here’s a general overview of the calculations involved:

  1. Power Rating Calculation:
  2. To calculate the power rating of a V-belt system, you need to determine the maximum power that the belt can transmit without slipping or experiencing excessive wear. The power rating is typically expressed in horsepower (HP) or kilowatts (kW).

    The formula for calculating the power rating is:

     Power (HP or kW) = (Tension in belt (lb or N) * Belt speed (ft/min or m/s)) / 33,000 (for HP) or 1,000 (for kW) 

    The tension in the belt can be determined based on the design requirements of the system and is influenced by factors such as the type of application and the desired safety factor.

  3. Speed Capacity Calculation:
  4. The speed capacity of a V-belt system is the maximum rotational speed at which the belt can operate without experiencing excessive vibration or failure. It is typically expressed in revolutions per minute (RPM).

    The formula for calculating the speed capacity is:

     Speed (RPM) = (Belt pitch diameter (in or mm) * π * Belt speed (ft/min or m/s)) / 12 (for in) or 1000 (for mm) 

    The belt pitch diameter is determined based on the pulley dimensions and is the effective diameter at which the belt engages with the pulley.

It’s important to note that these calculations provide general guidelines, and actual power rating and speed capacity may vary depending on the specific belt and pulley design, as well as other factors such as belt tensioning, environmental conditions, and system efficiency. It is recommended to consult the belt manufacturer’s guidelines or seek assistance from an engineer experienced in power transmission systems to ensure accurate calculations and appropriate belt selection for a given application.

v belt

Are there any safety considerations when working with V-belts?

Working with V-belts involves certain safety considerations to ensure the well-being of personnel and the proper functioning of the belt drive system. Here are some important safety considerations when working with V-belts:

  1. Lockout/Tagout: Before performing any maintenance or adjustment on a belt drive system, it is crucial to follow proper lockout/tagout procedures. Lockout/tagout involves isolating the power source, de-energizing the equipment, and securing it with locks or tags to prevent unintentional startup or release of stored energy. This ensures the safety of personnel working on or near the V-belts.
  2. Personal Protective Equipment (PPE): When working with V-belts, appropriate personal protective equipment should be worn as per the specific tasks and potential hazards. This may include safety glasses, gloves, hearing protection, and protective clothing to safeguard against potential injury from flying debris, pinch points, or contact with rotating parts.
  3. Training and Familiarity: Ensure that personnel working with V-belts are adequately trained on safe work practices, including proper maintenance procedures, tensioning techniques, and the use of tools and equipment. Familiarity with the specific belt drive system and understanding the potential hazards associated with V-belts is essential for safe operation.
  4. Machine Guarding: Install appropriate machine guarding to prevent accidental contact with moving V-belts and exposed pulleys. Guards should be designed to prevent access to hazardous areas and comply with relevant safety regulations. Regularly inspect and maintain the guards to ensure their effectiveness.
  5. Tensioning and Adjustment: Follow proper procedures when tensioning or adjusting V-belts. Use the recommended tools and techniques specified by the manufacturer. Improper tensioning can lead to belt slippage, increased wear, and potential accidents. Avoid working near or reaching into the belt drive system while it is in operation.
  6. Proper Lifting and Handling: V-belts can be heavy and awkward to handle, especially in larger sizes. When lifting or handling V-belts, use proper lifting techniques and equipment to prevent strains or injuries. Avoid placing excessive stress on the belts during installation or removal.
  7. Maintaining Cleanliness: Keep the work area clean and free from debris, oil, or other contaminants that may affect traction or create slip hazards. Clean up any spills promptly and use appropriate cleaning methods to avoid slipping or tripping accidents.
  8. Manufacturer’s Guidelines: Adhere to the manufacturer’s guidelines, instructions, and specifications for the installation, tensioning, maintenance, and replacement of V-belts. Manufacturers provide valuable information on safe operating practices, recommended tension ranges, load capacities, and other relevant safety considerations specific to their V-belt products.

By following these safety considerations when working with V-belts, you can help mitigate potential hazards, reduce the risk of accidents, and ensure the safe and efficient operation of the belt drive system.

v belt

How do you properly install and tension a V-belt for optimal performance?

Proper installation and tensioning of a V-belt are crucial for achieving optimal performance and ensuring its longevity. Here are the steps to properly install and tension a V-belt:

  1. Select the appropriate V-belt: Determine the correct V-belt size and type based on the application requirements, including pulley diameters, power transmission needs, and environmental factors.
  2. Clean the pulleys: Ensure that the pulleys are clean and free from any contaminants, such as dirt, debris, or oil. Clean the pulley grooves using a brush or compressed air to ensure proper belt grip.
  3. Inspect the pulleys: Check the pulleys for any signs of wear, damage, or misalignment. Replace or repair any damaged or worn-out pulleys before proceeding with the installation.
  4. Place the V-belt on the pulleys: Position the V-belt on the pulleys, ensuring that it is properly seated in the pulley grooves. Make sure the belt is correctly aligned with the pulleys and is not twisted or kinked.
  5. Adjust the center distance: If necessary, adjust the center distance between the driving and driven pulleys to the recommended specifications provided by the manufacturer. This ensures proper belt tension and alignment.
  6. Tension the V-belt: The correct tension is crucial for optimal V-belt performance. Use a tension gauge to measure the belt’s tension. Follow the manufacturer’s guidelines or recommended tension specifications for the specific V-belt type and application.
  7. Apply tension gradually: Apply tension to the V-belt gradually and evenly. Avoid sudden or excessive tensioning, as it can lead to belt damage or pulley misalignment. Follow the recommended tensioning procedure provided by the manufacturer.
  8. Check the belt tension: After tensioning the belt, recheck the tension using a tension gauge. Ensure that the tension falls within the recommended range for the specific V-belt type and application. Adjust the tension if necessary.
  9. Verify alignment: Confirm that the pulleys are aligned properly. Check for any misalignment or belt tracking issues. Make adjustments as required to ensure the belt runs smoothly and centrally on the pulleys.
  10. Perform a test run: After installation and tensioning, perform a test run of the V-belt system. Monitor the belt’s performance, including proper grip, minimal vibration, and absence of noise. Address any issues or abnormalities promptly.

It is important to refer to the manufacturer’s guidelines and specifications for the specific V-belt type and application. They may provide additional instructions or considerations for installation and tensioning.

By following these steps and adhering to the manufacturer’s recommendations, you can ensure the proper installation and tensioning of a V-belt, leading to optimal performance, reduced wear, and extended belt life.

China Best Sales Agricultural Harvester V Belt for CZPT Spare Parts   a 3-axle vehicleChina Best Sales Agricultural Harvester V Belt for CZPT Spare Parts   a 3-axle vehicle
editor by CX 2024-05-14

China Good quality Combine Agricultural Harvester Banded Transmission Rubber V-Belt axle carrier

Product Description

Product Description
 

Product Name Harvest Flat V-Belts
Transportation express / by air/ by sea
Using power transimission
Certification ISO
Brand BINLONG
Usage Power Transmission Equipment
Keyword v belt

Our Feature

Features:
•  Specially designed for application with outside idlers
•  More flexible, suitable for small pulley diameters
•  Higher power transmission than regular belts
•  Excellent performance under variable load conditions
•  Temperature range: -18 to +80

Our Company
 

Factory                                                                                Warehouse

 

Workshop

Packing & Delivery

Packing Details : Packing, carton , Bags
Delivery Details : 15-20 days 


FAQ
 

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Feature: Flame-Retardant, Anti-Static, Oil-Resistant, Cold-Resistant, Corrosion-Resistant, Heat-Resistant, Alkali-Resistant, Skid-Resistance, Wear-Resistant, High Temperature-Resistance
Tensile Strength: Strong
Material: Rubber
Type: V Belt
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

v belt

What are the key differences between standard V-belts and cogged V-belts?

Standard V-belts and cogged V-belts are two variations of V-belts that differ in their design and performance characteristics. Here are the key differences between these two types of belts:

  1. Design:
  2. Standard V-belts have a smooth, continuous surface on the inside, which comes in contact with the pulleys. On the other hand, cogged V-belts have notches or cogs on the inside surface. These cogs allow the belt to flex more easily and improve its flexibility and bending capabilities.

  3. Flexibility:
  4. The presence of cogs in cogged V-belts makes them more flexible compared to standard V-belts. This increased flexibility allows cogged V-belts to bend and wrap around smaller pulleys more easily. It also reduces the bending stress and heat generation, resulting in improved performance and longer belt life.

  5. Heat Dissipation:
  6. Cogged V-belts have better heat dissipation properties compared to standard V-belts. The cogs create additional surface area, which improves airflow and heat dissipation during operation. This helps to reduce heat buildup and minimize the risk of belt slippage or premature wear due to excessive heat.

  7. Power Transmission Capacity:
  8. Standard V-belts and cogged V-belts have similar power transmission capacity for most applications. However, cogged V-belts may have a slightly reduced power capacity compared to standard V-belts due to the presence of cogs, which can reduce the contact area with the pulleys. As a result, cogged V-belts are typically used in applications that require moderate power transmission.

  9. Noise and Vibration:
  10. Cogged V-belts generally produce less noise and vibration compared to standard V-belts during operation. The presence of cogs helps to reduce the vibration and noise caused by belt slippage or engagement with the pulleys. This makes cogged V-belts suitable for applications where noise reduction is important, such as in HVAC systems or household appliances.

  11. Application Suitability:
  12. Standard V-belts are commonly used in a wide range of industrial applications for power transmission. They are suitable for applications with larger pulleys and higher power requirements. Cogged V-belts, on the other hand, are often preferred in applications that involve smaller pulleys, tighter spaces, or where improved flexibility and reduced noise are desired.

It’s important to consider the specific requirements of the application and consult the manufacturer’s recommendations when choosing between standard V-belts and cogged V-belts. Understanding the key differences between these two types of belts can help in selecting the most appropriate option for a particular power transmission application.

v belt

What are the factors that affect the lifespan and efficiency of V-belts?

The lifespan and efficiency of V-belts can be influenced by several factors. Here are the key factors that can affect the performance of V-belts:

  1. Belt Tension:
  2. Proper belt tension is crucial for the longevity and efficiency of V-belts. Insufficient tension can cause slippage, while excessive tension can lead to excessive load on the belt and other components. It is important to follow the manufacturer’s recommendations for the correct tension range.

  3. Belt Alignment:
  4. Poor belt alignment can cause uneven wear, increased friction, and reduced efficiency. Misaligned pulleys can cause the belt to run at an angle, resulting in premature wear and potential failure. Regularly check and adjust the alignment of pulleys to ensure proper belt tracking.

  5. Belt Condition:
  6. The condition of the V-belt itself is a significant factor in its lifespan and efficiency. Regularly inspect the belt for signs of wear, cracks, fraying, or glazing. Replace worn-out or damaged belts promptly to avoid further issues.

  7. Maintenance and Lubrication:
  8. Proper maintenance and lubrication can significantly extend the lifespan of V-belts. Adequate lubrication reduces friction and heat buildup, which helps to prevent premature wear and cracking. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant.

  9. Operating Conditions:
  10. Operating conditions, such as temperature, humidity, and exposure to chemicals or contaminants, can affect the performance of V-belts. Extreme temperatures can cause the belt material to deteriorate, while exposure to chemicals or contaminants can lead to belt degradation. Ensure that the operating conditions are within the recommended range for the specific V-belt.

  11. Load and Application:
  12. The load and application requirements also impact the lifespan and efficiency of V-belts. Excessive loads or improper application can cause excessive stress on the belt, leading to premature failure. Ensure that the V-belt is appropriately sized and rated for the specific load and application.

By considering these factors and implementing proper maintenance practices, such as regular inspections, correct tensioning, alignment checks, and appropriate lubrication, you can maximize the lifespan and efficiency of V-belts in your applications.

v belt

What are the different types of V-belts available and their applications?

There are several types of V-belts available, each designed for specific applications and requirements. The most common types of V-belts include:

  1. Classic V-belts: Also known as conventional V-belts, these are the standard V-belts with a trapezoidal cross-section. They are widely used in various industrial applications for general power transmission, such as in HVAC systems, agricultural machinery, and industrial equipment.
  2. Narrow V-belts: Narrow V-belts are narrower than classic V-belts and have a narrower V-shaped profile. They are suitable for applications where space is limited or where high-speed ratios are required. These belts are commonly used in automotive engines, power tools, and small appliances.
  3. Wedge V-belts: Wedge V-belts, also known as narrow section V-belts, have a wider and deeper V-shaped cross-section compared to classic V-belts. This design allows for higher power transmission capacity and better resistance to belt slippage. Wedge V-belts are used in heavy-duty applications, such as in industrial machinery, mining equipment, and large agricultural machinery.
  4. Double V-belts: Double V-belts consist of two V-belts joined side by side. These belts provide increased power transmission capacity and are commonly used in applications where high torque is required, such as in heavy-duty machinery, pumps, and compressors.
  5. Variable Speed V-belts: Variable speed V-belts, also known as V-ribbed belts or multi-rib belts, have a ribbed surface on one side of the belt. This design allows for improved flexibility and enhanced power transmission efficiency. Variable speed V-belts are commonly used in automotive engines, industrial machinery, and appliances where variable speed control is required.

The choice of V-belt type depends on factors such as the power transmission requirements, space limitations, speed ratios, and the specific application. It is important to select the appropriate V-belt type based on these factors to ensure efficient and reliable power transmission.

In summary, the different types of V-belts available include classic V-belts, narrow V-belts, wedge V-belts, double V-belts, and variable speed V-belts. Each type has its own characteristics and is suitable for specific applications based on power transmission needs and requirements.

China Good quality Combine Agricultural Harvester Banded Transmission Rubber V-Belt   axle carrierChina Good quality Combine Agricultural Harvester Banded Transmission Rubber V-Belt   axle carrier
editor by CX 2024-04-25

China Professional Raw Edge Belts Agricultural Machinery V-Belt for Large Combine Harvester axle clamp tool

Product Description

We are the rubber product factory HEYI RUBBER Co.,Ltd,  specializing in various of V belt
( Fan Belt, Raw Edge V Belt, Variable Speed Belt, Joint V Belt) oil seal and other rubber
product. Use for agriculture industrial and automotive. Customizedservice can be offered
any time.

Product Description:                                                                                                         

Product Name Rubber V Belt Brand Name HEIYI
Material EPDM Packing Plastic Bag/
Carton
Length Range 500mm-5500mm
(In La)
Delivery 15-30 Days
Company Type Manufacturer
(Factory)
Belt Type Cog and Rib

All Series                                                                                            

Specification of V Belt

  
Model
 
Top  Width(mm) Thickness(mm) Length Range(inch) Length Range(mm) Angle
O/AV10* 10 8.5 19.68″-216.5″ 500-5500 40°
A/AV13* 13 9.5 19.68″-216.5″ 500-5500 40°
B/AV17* 17 14 19.68″-216.5″ 500-5500 40°
C/AV22* 22 19 19.68″-216.5″ 500-5500 40°
SAx/LAx 12.5 8.8 19.68″-216.5″ 500-5500 38°
SBx/LBx 16.2 10 19.68″-216.5″ 500-5500 38°
SCx/LCx 21 11.2 19.68″-216.5″ 500-5500 40°
XPA/SPAX 12.5 10 19.68″-216.5″ 500-5500 40°
XPB/SPBX/5V 16.2 13 19.68″-216.5″ 500-5500 40°
XPC/SPCX 21 15 19.68″-216.5″ 500-5500 40°
XPZ/SPZX/3V 9.5 8.8 19.68″-216.5″ 500-5500 40°
25N/8V 25 17 19.68″-216.5″ 500-5500 40°
HI 25 13 19.68″-216.5″ 500-5500 32°
HJ/HDJ 32 18 19.68″-216.5″ 500-5500 32°
HD 32 18 19.68″-216.5″ 500-5500 40°
HK 38 20 19.68″-216.5″ 500-5500 32°
HL 45 24 19.68″-216.5″ 500-5500 32°
HM 51 25.5 19.68″-216.5″ 500-5500 32°
HN 57 26 19.68″-216.5″ 500-5500 32°
HO 63 26 19.68″-216.5″ 500-5500 32°
9J-5 50.1 11 19.68″-216.5″ 500-5500 40°
9J-6 60.4 11 19.68″-216.5″ 500-5500 40°
9J-7 70.7 11 19.68″-216.5″ 500-5500 40°
3R-5V 50 15.2 19.68″-216.5″ 500-5500 40°
4R-5V 67.5 15.2 19.68″-216.5″ 500-5500 40°
4R-SPA 60.8 11 19.68″-216.5″ 500-5500 38°
2HB 35 14 19.68″-216.5″ 500-5500 38°
3HB 54 14 19.68″-216.5″ 500-5500 38°
4HB 72.5 14 19.68″-216.5″ 500-5500 38°
5HB 91 14 19.68″-216.5″ 500-5500 38°
6HB 110 14 19.68″-216.5″ 500-5500 38°
2HC 47.5 16 19.68″-216.5″ 500-5500 38°
3HC 72.5 16 19.68″-216.5″ 500-5500 38°
4HC 98 16 19.68″-216.5″ 500-5500 38°

Other special sizes v belts(such as 36*,45*,68*)banded v belts, flat belts and PK,DPK,  PJ, PL,
AA,BB,CC Belts 
are also available, if you have any need of them, please feel free to contact us. We
will confirm all the details and reply you within 24 hours.

Structure of V Belt                                                                                   
 

  Function Material
Tension
Member
The treated polyester cord is a low stretch high
strength tension member CZPT to withstand shock
loads on drives with fixed centers
Polyester/Aramid Fiber
Rubber
Ribs/Teeth
Long wearing, oil resistant, fibre-loaded neoprene
rubber is used in the CZPT to provide support for the
tension member and to transmit the loads to the pulley
EPDM
Backing
Material
Bias ply type fabric backing resists cracking and
provides abrasion resistance
EPDM
Insulation
Material
oil and heat resistant rubber is used to CZPT the
tension member to the rest of the belt
EPDM

Teeth part also can be covered with Fabric, if you have any need of it, please do tell us when you placing
the order.

Advantages                                                                                               

. Thousands of moulds available. MOQ is based on 1 CZPT quantity
. ISO/TS16949 quality certificate
. Warranty: 100,000kms-150,000kms
. We could supply a whole series of auto PK belts, accept OEM

Product Description                                                                                 

. Excellent flexibility
. High power transmission efficiency
 .Lower noise
. High grade engineered rubber
. Longer service life
.Temperature range from -50ºC to +120ºC
.Oil, heat,ozone and abrasion resistant

FAQ                                                                                                             

Q1.  Can I have a sample order?
        Yes, any sample order is welcomed to know the quality of our products.

Q2.  What about the lead time of the sample or the final order?
        2-5 days for normal sample.
        20-30 days for a formal order.
        For large quantity, lead time can be negotiated.

Q3. How much is the minimum quantity for each item in 1 order?
       One CZPT quantity is ok. Usually around 50pcs for small item, 10-20pcs for big item. 

Q4. Is it possible to print our logo or brand on the belt?
       Yes, we can print your logo or design on the belt after receipt of your formal authorization letter of the logo or         
       your brand.

Q5. Do you offer the guarantee for your product?
       Yes, usually we offer 1 year warranty for auto belts; for agricultural belt and industril belts, the warranty             
       will  be different according to your quality demand.

Related products                                                                           
 Application                                                                                                          
Factory                                                                                                                                     

Quality control                                                                                                                          

Certification                                                                                                                         

Exhibition                                                                                                                                 
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Feature: Flame-Retardant, Anti-Static, Cold-Resistant, Heat-Resistant, Skid-Resistance, Wear-Resistant, High Temperature-Resistance
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

v belt

What are the key differences between standard V-belts and cogged V-belts?

Standard V-belts and cogged V-belts are two variations of V-belts that differ in their design and performance characteristics. Here are the key differences between these two types of belts:

  1. Design:
  2. Standard V-belts have a smooth, continuous surface on the inside, which comes in contact with the pulleys. On the other hand, cogged V-belts have notches or cogs on the inside surface. These cogs allow the belt to flex more easily and improve its flexibility and bending capabilities.

  3. Flexibility:
  4. The presence of cogs in cogged V-belts makes them more flexible compared to standard V-belts. This increased flexibility allows cogged V-belts to bend and wrap around smaller pulleys more easily. It also reduces the bending stress and heat generation, resulting in improved performance and longer belt life.

  5. Heat Dissipation:
  6. Cogged V-belts have better heat dissipation properties compared to standard V-belts. The cogs create additional surface area, which improves airflow and heat dissipation during operation. This helps to reduce heat buildup and minimize the risk of belt slippage or premature wear due to excessive heat.

  7. Power Transmission Capacity:
  8. Standard V-belts and cogged V-belts have similar power transmission capacity for most applications. However, cogged V-belts may have a slightly reduced power capacity compared to standard V-belts due to the presence of cogs, which can reduce the contact area with the pulleys. As a result, cogged V-belts are typically used in applications that require moderate power transmission.

  9. Noise and Vibration:
  10. Cogged V-belts generally produce less noise and vibration compared to standard V-belts during operation. The presence of cogs helps to reduce the vibration and noise caused by belt slippage or engagement with the pulleys. This makes cogged V-belts suitable for applications where noise reduction is important, such as in HVAC systems or household appliances.

  11. Application Suitability:
  12. Standard V-belts are commonly used in a wide range of industrial applications for power transmission. They are suitable for applications with larger pulleys and higher power requirements. Cogged V-belts, on the other hand, are often preferred in applications that involve smaller pulleys, tighter spaces, or where improved flexibility and reduced noise are desired.

It’s important to consider the specific requirements of the application and consult the manufacturer’s recommendations when choosing between standard V-belts and cogged V-belts. Understanding the key differences between these two types of belts can help in selecting the most appropriate option for a particular power transmission application.

v belt

What maintenance practices are recommended for prolonging the lifespan of V-belts?

Implementing regular maintenance practices is crucial for extending the lifespan of V-belts and ensuring their optimal performance. Here are some recommended maintenance practices:

  1. Visual inspections: Conduct regular visual inspections of the V-belts to identify any signs of wear, damage, or misalignment. Look for cracks, fraying, glazing, or any visible abnormalities. Inspect the pulleys for wear or damage as well.
  2. Tension checks: Check the tension of the V-belts on a periodic basis using a tension gauge. Ensure that the belts are within the recommended tension range specified by the manufacturer. Incorrect tension can lead to belt slippage, accelerated wear, and decreased power transmission efficiency.
  3. Pulley alignment: Verify that the pulleys are correctly aligned to prevent unnecessary stress and wear on the V-belts. Misaligned pulleys can cause belt slippage, uneven load distribution, and premature failure. Adjust the pulleys as necessary to maintain proper alignment.
  4. Cleanliness: Keep the V-belts and pulleys clean and free from dirt, debris, oil, or other contaminants. Regularly clean the belt drive system to prevent the accumulation of particles that can affect belt grip and performance.
  5. Environmental considerations: Evaluate the operating environment for factors that can impact the V-belts, such as temperature extremes, humidity, or exposure to chemicals. Take appropriate measures, such as implementing ventilation or using heat-resistant belts, to mitigate adverse environmental effects.
  6. Load monitoring: Ensure that the V-belts are not subjected to excessive loads beyond their capacity. Monitor the load requirements of the application and consider factors such as torque, horsepower, and operating conditions. Overloading can lead to accelerated wear and premature belt failure.
  7. Timely replacements: Establish a preventive maintenance schedule for V-belt replacements based on the manufacturer’s recommendations and the observed wear patterns. Replace worn or damaged V-belts promptly to prevent unexpected failures and minimize downtime.
  8. Proper storage: If spare V-belts are kept in stock, store them in a clean, dry, and temperature-controlled environment to avoid deterioration. Follow the manufacturer’s instructions for proper storage conditions.
  9. Training and documentation: Ensure that maintenance personnel receive proper training on V-belt maintenance procedures and safety precautions. Keep detailed records of maintenance activities, including inspections, tension measurements, and replacements, for future reference and tracking.

By implementing these maintenance practices, you can significantly prolong the lifespan of V-belts, reduce the risk of unexpected failures, and optimize the performance of the belt drive system. Regular maintenance not only extends the life of the V-belts but also allows for early detection of potential issues, enabling timely corrective actions to be taken.

v belt

How do you measure and select the right size of V-belt for a specific application?

When selecting the right size of V-belt for a specific application, it is important to consider factors such as the pulley diameters, center distance between the pulleys, power requirements, and the desired operating speed. Here is a step-by-step guide on how to measure and select the appropriate V-belt size:

  1. Identify the pulley diameters: Measure the diameter of both the driving and driven pulleys. Make sure to measure the diameter at the highest point of the pulley groove where the belt rides.
  2. Determine the center distance: Measure the distance between the center points of the driving and driven pulleys. This is the center distance and it plays a crucial role in determining the appropriate V-belt length.
  3. Calculate the pitch diameter: The pitch diameter is the effective diameter where the belt contacts the pulley. It can be calculated using the following formula: Pitch Diameter = (Driving Pulley Diameter + Driven Pulley Diameter) / 2.
  4. Consider the power requirements: Determine the amount of power that needs to be transmitted by the V-belt. This can be in the form of horsepower (HP) or kilowatts (kW). Refer to the manufacturer’s guidelines or engineering specifications to ensure the selected V-belt can handle the required power.
  5. Choose the appropriate V-belt type: Based on the calculated pitch diameter, center distance, and power requirements, select the type of V-belt that is suitable for the specific application. Consider factors such as load capacity, speed capability, and environmental conditions.
  6. Refer to V-belt manufacturer’s catalogs: Consult the manufacturer’s catalogs or online resources to find the available V-belt sizes and corresponding part numbers. Cross-reference the calculated parameters with the provided charts or tables to identify the appropriate V-belt size.
  7. Verify the selection: Double-check the selected V-belt size against the calculated parameters to ensure accuracy. If possible, consult with a technical expert or the manufacturer’s support team to validate the selection.

It is important to note that V-belt sizes are standardized and typically follow specific designations, such as the Classical V-belt designation (e.g., A, B, C, D) or the metric designation (e.g., SPZ, SPA, SPB, SPC). These designations indicate different belt widths and lengths.

In summary, measuring and selecting the right size of V-belt for a specific application involves identifying the pulley diameters, determining the center distance, calculating the pitch diameter, considering the power requirements, choosing the appropriate V-belt type, referring to manufacturer’s catalogs, and verifying the selection. Following these steps will help ensure the proper functioning and longevity of the V-belt in the intended application.

China Professional Raw Edge Belts Agricultural Machinery V-Belt for Large Combine Harvester   axle clamp toolChina Professional Raw Edge Belts Agricultural Machinery V-Belt for Large Combine Harvester   axle clamp tool
editor by CX 2024-04-23

China high quality High Quality Agricultural Belt V Belt C2445 for World Harvester bad cv axle

Product Description

Product Description

high quality agricultural belt V belt  C2445 for world harvester 

Detailed Photos

 

Packaging & Shipping

Company Profile

HangZhou Shunyu Agricultural Machinery Co.,Ltd is specialized on
Tractors and Parts for YTO, , KUBOTA, JOHN DEERE
Combine harvesters and Parts for WORLD, LOVOL, KUBOTA, YANMAR,GRANDE
And all the related rice machines Transplanters, seeders, threshers etc for example.
We can not put all of our products here, if you have any needs, Welcome to send us inquiry
And we will recommend for you.

Our Advantages

FAQ

Q: What is the warranty of your agricultural machines?

A: 1 year guarantee for whole machine
 

Q: How long is your delivery time ?

A:Normally it takes 10-35 days to deliver after receiving your payment
 

Q: What is the payment term ?

A:T/T;Westorn union;Trade assurance and so on
 

Q: Is OEM or ODM service acceptable ?

A:Customized service is available,according to customer’s local filed condition

more products

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Belt
Usage: Harvester
Power Source: Diesel
After-sales Service: Online Support
Warranty: 1 Year
Transport Package: Standard Export Packing
Customization:
Available

|

Customized Request

v belt

Can V-belts be used in environments with high temperatures or humidity?

V-belts can be used in environments with high temperatures or humidity, but it is important to consider the specific conditions and choose the appropriate belt material and design to ensure reliable and long-lasting performance. Here are some considerations regarding the use of V-belts in such environments:

  1. Temperature Resistance:
  2. V-belts are available in different materials that offer varying levels of temperature resistance. Standard V-belts made from materials like rubber or neoprene can typically withstand temperatures within a range of -30°C to 80°C (-22°F to 176°F). However, for applications with higher temperatures, specialized high-temperature belts made from materials like silicone or EPDM (ethylene propylene diene monomer) can be used, which can withstand temperatures up to 150°C (302°F) or even higher.

  3. Heat Dissipation:
  4. In high-temperature environments, heat dissipation becomes crucial to prevent belt degradation. Adequate ventilation and cooling measures should be in place to dissipate heat generated during belt operation. This can help maintain the integrity of the belt material and prevent premature wear or failure.

  5. Humidity and Moisture:
  6. V-belts can generally tolerate moderate levels of humidity and moisture. However, in environments with high humidity or exposure to water, it is important to select belts with moisture-resistant properties. Some V-belts come with special coatings or treatments that enhance their resistance to moisture, preventing swelling, deterioration, or loss of strength.

  7. Chemical Resistance:
  8. In certain high-temperature or high-humidity environments, there might be exposure to chemicals or contaminants. It is crucial to choose V-belt materials that are resistant to the specific chemicals present in the environment. Chemical-resistant belts, such as those made from materials like polyurethane or fluorocarbon elastomers, can withstand the effects of chemicals and maintain their performance.

  9. Regular Inspections and Maintenance:
  10. In any environment, but especially in high-temperature or high-humidity conditions, regular inspections and maintenance are essential. Periodic checks for signs of wear, cracking, glazing, or other forms of belt deterioration should be conducted. Prompt replacement of worn-out or damaged belts will help prevent unexpected failures and minimize downtime.

By considering these factors and selecting V-belts specifically designed for high-temperature or high-humidity environments, you can ensure proper performance, longevity, and reliability in such operating conditions.

v belt

What are the key differences between V-belts and other types of power transmission belts?

V-belts are a popular type of power transmission belts, but they differ from other types of belts in terms of design, construction, and specific applications. Here are the key differences:

1. Belt Profile:

V-belts have a trapezoidal or V-shaped cross-sectional profile, which gives them their name. This profile allows the belts to fit securely into V-shaped pulleys, providing effective power transmission and grip. Other types of belts, such as flat belts or timing belts, have different profiles suited for specific applications.

2. Power Transmission Method:

V-belts transmit power through frictional forces between the belt and the pulleys. As the belt wraps around the pulleys, the friction between the belt and the pulley surfaces allows the transfer of torque and power. In contrast, other belts, like timing belts or chain drives, use toothed profiles or interlocking mechanisms to transmit power, providing precise synchronization and higher torque transmission.

3. Load Capacity:

V-belts are designed to handle moderate to high loads, making them suitable for a wide range of applications. However, certain applications with heavier loads may require specialized heavy-duty V-belts or alternative belt types, such as synchronous belts or chain drives, which offer higher load-carrying capacities.

4. Speed Range:

V-belts are suitable for a broad speed range, but their limitations may vary depending on the specific design, material, and construction. Traditional V-belts may have speed limitations at extremely high speeds due to centrifugal forces and heat generation. High-speed V-belts or narrow V-belts are available for applications that require higher speeds. In contrast, timing belts and synchronous belts are designed for precise speed control and are commonly used in applications with strict speed requirements.

5. Tensioning and Maintenance:

V-belts require periodic tensioning to maintain proper grip and power transmission efficiency. Tensioning is typically achieved through manual adjustment or automatic tensioners. Other types of belts, such as timing belts or chain drives, often have fixed tensioning systems and require less frequent maintenance.

6. Noise and Vibration:

V-belts generally operate with lower noise and vibration levels compared to other types of belts, such as chain drives. The design and frictional nature of V-belts contribute to smoother operation and reduced noise generation, making them suitable for applications where noise and vibration control is important.

7. Applications:

V-belts are widely used in various applications, including industrial machinery, automotive systems, HVAC systems, and power transmission in general. They are versatile and can accommodate different power requirements. Other belt types, such as timing belts, are commonly used in precision positioning, robotics, or applications that require synchronous motion.

Overall, V-belts offer reliable and cost-effective power transmission for a wide range of applications. However, the selection of the appropriate belt type depends on factors such as load requirements, speed range, precision, noise considerations, and specific application needs.

v belt

What is a V-belt and how does it work?

A V-belt, also known as a Vee belt or a wedge belt, is a type of power transmission belt that is commonly used in various industrial applications. It is called a V-belt because of its trapezoidal cross-sectional shape, resembling the letter “V.”

The primary purpose of a V-belt is to transmit power between two rotating shafts. It does this by wrapping around the pulleys or sheaves on the shafts and creating frictional forces between the belt and the pulleys. The friction generated between the belt and the pulleys allows the belt to transfer torque from the driving pulley to the driven pulley.

The V-belt’s design provides several advantages for power transmission:

  1. High friction: The V-shaped cross-section of the belt increases the contact area with the pulleys, resulting in high frictional forces. This allows for effective power transmission even in applications with high torque or heavy loads.
  2. Belt wedging: When the V-belt is tensioned, it wedges itself deeper into the pulley grooves, enhancing the friction and preventing slippage between the belt and the pulleys. This feature is especially useful in applications where the driven pulley needs to rotate at a different speed than the driving pulley.
  3. Quiet operation: V-belts generally operate with less noise compared to other types of belts, such as flat belts. The V-shaped design helps to reduce vibrations and noise levels during power transmission.
  4. Simple installation: V-belts are relatively easy to install and replace. They can be quickly mounted on the pulleys without requiring extensive alignment procedures.

However, it’s important to note that V-belts have limitations as well. They are not suitable for applications that require precise speed control or when high-speed ratios are needed. In such cases, other power transmission methods like gear systems or synchronous belts may be more appropriate.

In summary, V-belts are commonly used power transmission belts that utilize frictional forces to transfer torque between rotating shafts. Their V-shaped design and high friction characteristics make them effective for various industrial applications.

China high quality High Quality Agricultural Belt V Belt C2445 for World Harvester   bad cv axleChina high quality High Quality Agricultural Belt V Belt C2445 for World Harvester   bad cv axle
editor by CX 2024-04-16

China factory Toothed V-Belt CZPT Harvester Belts Sc-52 Sc-56 Sc-59 Agricultural Combine Harvester V Belt axle car

Product Description

How to keep your  harvester running in top condition?
Maintain your machine timely, and keep enough stock of  harvester parts.

How to keep your  harvester running in top condition? Maintain your machine timely, and keep enough stock of  harvester parts.
Quality and cost-saving CZPT harvester parts have a profound impact on the way the farmer running their crops

We are an over 20 year experience agriculture parts manufacturer.TiHangZhou aims to manufacturer a wide selection of combine harvester parts. 
Since our market has huge users of  harvester, so we know very well what our clients need for the  harvester parts.

You can find the full scope of Kubota/Yanmar/World harvester parts .
We will be proud to be listed on your long-term harvester spare parts manufacturers or other  spares suppliers in the soon future

Product Description

Brand agrotianda
Package Wooden case / Carton / nude package/frame
Trademark customizable
HS 8433909000
Origin ZheJiang ,china
Production Capacity 15000 Tons / Year

                   
       DHangZhou TIHangZhou INTELIGENT TECHNOLOGY Co., Ltd. is a high tech company specializing in R&D, design, manufacture, sales and service of high-tech agricultural equipment. TIHangZhou’s products are widely used in farmland, orchard, forest plant protection, and other fields. 
TIHangZhou has professional product technology talents and experienced team, not only provide customers with quality products, first-class technology, but also provide with perfect and thoughtful service. TIHangZhou committed to be your ideal partner and will always be committed to your requirement. TIHangZhou has applied for a number of national patents, will build mature laboratories and production workshops. At present, the domestic business has expanded to ZheJiang , ZheJiang , ZheJiang , ZheJiang , HangZhouang, ZheJiang , Northeast China and other places in China, and has established close cooperative relations with customers in Indonesia, Malaysia, Thailand, Myanmar, Brazil, Peru, Ecuador, Columbia more than 30 countries.

Based on advanced scientific research technology and professional team, TIHangZhou Will closely follow the trend of the “Internet +” era in the country and will provide more comprehensive intelligent integrated services for domestic and foreign companies to create a new type of smart agriculture. It will make an important contribution to safeguarding agricultural security and increasing people′s income. 

FAQ

1. What’s the MOQ? 

A:Each partnumnber at least 20 pcs.

2.Which brand do you produce?
A:We can produce spare parts of World /Yanmar/Kubota/Mubota harvester.

3. How to order parts?
A:Send me partnumber and qty , I will according qty give you best price.

4.What’s your Payment terms?
A:30% payment in advance by TT, 70% balance before delivery.

Q5:How long is your delivery time?
A:World/Yanmar/Kubota parts 7-15 days,Mubota parts 20-30 days.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Spare Parts
Usage: Harvester
Material: Material
Power Source: No
Weight: 1lbs
After-sales Service: Free Spare Parts
Customization:
Available

|

Customized Request

v belt

What are the best practices for storing spare V-belts to maintain their quality?

Proper storage of spare V-belts is essential to maintain their quality and ensure their performance when they are needed. Here are some best practices for storing spare V-belts:

  1. Clean and Dry Environment:
  2. Store the V-belts in a clean and dry environment to prevent contamination and moisture damage. Avoid storing them in areas where they may be exposed to dirt, dust, chemicals, or excessive humidity. Keeping the storage area clean and well-ventilated helps preserve the integrity of the belts.

  3. Temperature and Humidity Control:
  4. Ensure that the storage area has controlled temperature and humidity levels. Extreme temperatures or high humidity can adversely affect the belt material, leading to deterioration or loss of elasticity. Ideally, the temperature should be kept within a range of 10°C to 30°C (50°F to 86°F), and the humidity should be maintained at around 40% to 70%.

  5. Avoid Direct Sunlight:
  6. Direct exposure to sunlight can cause the belt material to degrade over time. Store the spare V-belts away from direct sunlight or any other sources of ultraviolet (UV) radiation. If possible, use opaque containers or covers to shield the belts from light.

  7. Avoid Bending or Twisting:
  8. Do not store the V-belts in a way that causes excessive bending or twisting. This can result in permanent deformation or stress on the belts, compromising their performance. Keep the belts flat or hang them in a manner that maintains their original shape.

  9. Proper Packaging:
  10. If the V-belts are stored in packaging, ensure that the packaging is intact and provides adequate protection against external elements. Avoid storing the belts in damaged or torn packaging, as it may expose them to contaminants or moisture.

  11. First-In-First-Out (FIFO) Rotation:
  12. Implement a first-in-first-out (FIFO) rotation system for spare V-belts. This means using the oldest belts first and replenishing the stock with newly purchased belts. This practice helps prevent the storage of belts for extended periods, reducing the risk of degradation or obsolescence.

  13. Regular Inspections:
  14. Periodically inspect the stored V-belts for any signs of damage, such as cracks, brittleness, or deterioration. If any issues are detected, replace the affected belts promptly to ensure that only high-quality spare belts are available for use when needed.

By following these best practices, you can maintain the quality and performance of spare V-belts, ensuring that they are ready for use and prolonging their service life.

v belt

What are the factors that affect the lifespan and efficiency of V-belts?

The lifespan and efficiency of V-belts can be influenced by several factors. Here are the key factors that can affect the performance of V-belts:

  1. Belt Tension:
  2. Proper belt tension is crucial for the longevity and efficiency of V-belts. Insufficient tension can cause slippage, while excessive tension can lead to excessive load on the belt and other components. It is important to follow the manufacturer’s recommendations for the correct tension range.

  3. Belt Alignment:
  4. Poor belt alignment can cause uneven wear, increased friction, and reduced efficiency. Misaligned pulleys can cause the belt to run at an angle, resulting in premature wear and potential failure. Regularly check and adjust the alignment of pulleys to ensure proper belt tracking.

  5. Belt Condition:
  6. The condition of the V-belt itself is a significant factor in its lifespan and efficiency. Regularly inspect the belt for signs of wear, cracks, fraying, or glazing. Replace worn-out or damaged belts promptly to avoid further issues.

  7. Maintenance and Lubrication:
  8. Proper maintenance and lubrication can significantly extend the lifespan of V-belts. Adequate lubrication reduces friction and heat buildup, which helps to prevent premature wear and cracking. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant.

  9. Operating Conditions:
  10. Operating conditions, such as temperature, humidity, and exposure to chemicals or contaminants, can affect the performance of V-belts. Extreme temperatures can cause the belt material to deteriorate, while exposure to chemicals or contaminants can lead to belt degradation. Ensure that the operating conditions are within the recommended range for the specific V-belt.

  11. Load and Application:
  12. The load and application requirements also impact the lifespan and efficiency of V-belts. Excessive loads or improper application can cause excessive stress on the belt, leading to premature failure. Ensure that the V-belt is appropriately sized and rated for the specific load and application.

By considering these factors and implementing proper maintenance practices, such as regular inspections, correct tensioning, alignment checks, and appropriate lubrication, you can maximize the lifespan and efficiency of V-belts in your applications.

v belt

What are the different types of V-belts available and their applications?

There are several types of V-belts available, each designed for specific applications and requirements. The most common types of V-belts include:

  1. Classic V-belts: Also known as conventional V-belts, these are the standard V-belts with a trapezoidal cross-section. They are widely used in various industrial applications for general power transmission, such as in HVAC systems, agricultural machinery, and industrial equipment.
  2. Narrow V-belts: Narrow V-belts are narrower than classic V-belts and have a narrower V-shaped profile. They are suitable for applications where space is limited or where high-speed ratios are required. These belts are commonly used in automotive engines, power tools, and small appliances.
  3. Wedge V-belts: Wedge V-belts, also known as narrow section V-belts, have a wider and deeper V-shaped cross-section compared to classic V-belts. This design allows for higher power transmission capacity and better resistance to belt slippage. Wedge V-belts are used in heavy-duty applications, such as in industrial machinery, mining equipment, and large agricultural machinery.
  4. Double V-belts: Double V-belts consist of two V-belts joined side by side. These belts provide increased power transmission capacity and are commonly used in applications where high torque is required, such as in heavy-duty machinery, pumps, and compressors.
  5. Variable Speed V-belts: Variable speed V-belts, also known as V-ribbed belts or multi-rib belts, have a ribbed surface on one side of the belt. This design allows for improved flexibility and enhanced power transmission efficiency. Variable speed V-belts are commonly used in automotive engines, industrial machinery, and appliances where variable speed control is required.

The choice of V-belt type depends on factors such as the power transmission requirements, space limitations, speed ratios, and the specific application. It is important to select the appropriate V-belt type based on these factors to ensure efficient and reliable power transmission.

In summary, the different types of V-belts available include classic V-belts, narrow V-belts, wedge V-belts, double V-belts, and variable speed V-belts. Each type has its own characteristics and is suitable for specific applications based on power transmission needs and requirements.

China factory Toothed V-Belt CZPT Harvester Belts Sc-52 Sc-56 Sc-59 Agricultural Combine Harvester V Belt   axle carChina factory Toothed V-Belt CZPT Harvester Belts Sc-52 Sc-56 Sc-59 Agricultural Combine Harvester V Belt   axle car
editor by CX 2024-04-16