China OEM CZPT Auto Car V-Ribbed Belt for Benz M272 M273 W204 W203 W212 X164 X204 W251 W221 OE 6pk2398 axle end caps

Product Description

Description

FREY auto car v-ribbed belt for benz M272 M273 W204 W203 W212 X164 X204 W251 W221 OE 6PK2398 
OEM Number 6PK2398 
Brand Frey
W220 W211 M272 M273 W204 W203 W212 X164 X204 W251 W221
Market Type Aftermarket
Price Term EXW, FOB HangZhou/HangZhou
Payment T/T, Paypal, West Union, L/C, Cash, etc
Quality Produced according to the OE Parts
Certificate TUV, SGS
Packing Frey Brand, Customer Brand, Neutral Packing
Delivery Time  5-15 days if in stock
Export Areas Sounth America, Europe, Amercia, Asia

  Frey, since 2004, is a Supply Chain Management Co, Ltd.For automotive after-market integrating R8D, operation, sales,service,import and export trade of automo-bile parts. Our core products focus on serving the aftermarket brand such as Mer-cedes Benz and BMW And we are a brand supplier with the most complete SkU in automotive aftermar-ket in China.ln China, CZPT has morethan 150 agency outlets, and the sales of prod-ucts have covered more than 110 countries and regions around theworld, basicallyrealizing the sales network all over the world.As a wel-known global auto partsbrand,Frey has a global supply intelligence distribution centers in HangZhoucover-ing a total area of 15000 square meters. in the digital modern industrial system, through the introduction of perfect ware-housing and logistics system and SAPintelligent management system, CZPT prod-ucts are more rigorous and meticulous in the production and operation.warehousingmanagement,accurate distribution and other series of operation processes.

  In the past 17 years, CZPT Brand has always adhered to independent researchand development,with technologyas the driving force and products as the core.Soevery year, more than 800 new products are introduced, with atotal of more than15000 products. The products produced by CZPT Brand have successfully passed the SO 9001quality management systemcertification by TUV South Germany group.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Warranty: 12 Months
Type: Standard

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

v belt

How do you calculate the power rating and speed capacity of a V-belt system?

Calculating the power rating and speed capacity of a V-belt system involves considering various factors such as belt type, pulley dimensions, belt tension, and speed. Here’s a general overview of the calculations involved:

  1. Power Rating Calculation:
  2. To calculate the power rating of a V-belt system, you need to determine the maximum power that the belt can transmit without slipping or experiencing excessive wear. The power rating is typically expressed in horsepower (HP) or kilowatts (kW).

    The formula for calculating the power rating is:

     Power (HP or kW) = (Tension in belt (lb or N) * Belt speed (ft/min or m/s)) / 33,000 (for HP) or 1,000 (for kW) 

    The tension in the belt can be determined based on the design requirements of the system and is influenced by factors such as the type of application and the desired safety factor.

  3. Speed Capacity Calculation:
  4. The speed capacity of a V-belt system is the maximum rotational speed at which the belt can operate without experiencing excessive vibration or failure. It is typically expressed in revolutions per minute (RPM).

    The formula for calculating the speed capacity is:

     Speed (RPM) = (Belt pitch diameter (in or mm) * π * Belt speed (ft/min or m/s)) / 12 (for in) or 1000 (for mm) 

    The belt pitch diameter is determined based on the pulley dimensions and is the effective diameter at which the belt engages with the pulley.

It’s important to note that these calculations provide general guidelines, and actual power rating and speed capacity may vary depending on the specific belt and pulley design, as well as other factors such as belt tensioning, environmental conditions, and system efficiency. It is recommended to consult the belt manufacturer’s guidelines or seek assistance from an engineer experienced in power transmission systems to ensure accurate calculations and appropriate belt selection for a given application.

v belt

What are the key differences between V-belts and other types of power transmission belts?

V-belts are a popular type of power transmission belts, but they differ from other types of belts in terms of design, construction, and specific applications. Here are the key differences:

1. Belt Profile:

V-belts have a trapezoidal or V-shaped cross-sectional profile, which gives them their name. This profile allows the belts to fit securely into V-shaped pulleys, providing effective power transmission and grip. Other types of belts, such as flat belts or timing belts, have different profiles suited for specific applications.

2. Power Transmission Method:

V-belts transmit power through frictional forces between the belt and the pulleys. As the belt wraps around the pulleys, the friction between the belt and the pulley surfaces allows the transfer of torque and power. In contrast, other belts, like timing belts or chain drives, use toothed profiles or interlocking mechanisms to transmit power, providing precise synchronization and higher torque transmission.

3. Load Capacity:

V-belts are designed to handle moderate to high loads, making them suitable for a wide range of applications. However, certain applications with heavier loads may require specialized heavy-duty V-belts or alternative belt types, such as synchronous belts or chain drives, which offer higher load-carrying capacities.

4. Speed Range:

V-belts are suitable for a broad speed range, but their limitations may vary depending on the specific design, material, and construction. Traditional V-belts may have speed limitations at extremely high speeds due to centrifugal forces and heat generation. High-speed V-belts or narrow V-belts are available for applications that require higher speeds. In contrast, timing belts and synchronous belts are designed for precise speed control and are commonly used in applications with strict speed requirements.

5. Tensioning and Maintenance:

V-belts require periodic tensioning to maintain proper grip and power transmission efficiency. Tensioning is typically achieved through manual adjustment or automatic tensioners. Other types of belts, such as timing belts or chain drives, often have fixed tensioning systems and require less frequent maintenance.

6. Noise and Vibration:

V-belts generally operate with lower noise and vibration levels compared to other types of belts, such as chain drives. The design and frictional nature of V-belts contribute to smoother operation and reduced noise generation, making them suitable for applications where noise and vibration control is important.

7. Applications:

V-belts are widely used in various applications, including industrial machinery, automotive systems, HVAC systems, and power transmission in general. They are versatile and can accommodate different power requirements. Other belt types, such as timing belts, are commonly used in precision positioning, robotics, or applications that require synchronous motion.

Overall, V-belts offer reliable and cost-effective power transmission for a wide range of applications. However, the selection of the appropriate belt type depends on factors such as load requirements, speed range, precision, noise considerations, and specific application needs.

v belt

How do you properly install and tension a V-belt for optimal performance?

Proper installation and tensioning of a V-belt are crucial for achieving optimal performance and ensuring its longevity. Here are the steps to properly install and tension a V-belt:

  1. Select the appropriate V-belt: Determine the correct V-belt size and type based on the application requirements, including pulley diameters, power transmission needs, and environmental factors.
  2. Clean the pulleys: Ensure that the pulleys are clean and free from any contaminants, such as dirt, debris, or oil. Clean the pulley grooves using a brush or compressed air to ensure proper belt grip.
  3. Inspect the pulleys: Check the pulleys for any signs of wear, damage, or misalignment. Replace or repair any damaged or worn-out pulleys before proceeding with the installation.
  4. Place the V-belt on the pulleys: Position the V-belt on the pulleys, ensuring that it is properly seated in the pulley grooves. Make sure the belt is correctly aligned with the pulleys and is not twisted or kinked.
  5. Adjust the center distance: If necessary, adjust the center distance between the driving and driven pulleys to the recommended specifications provided by the manufacturer. This ensures proper belt tension and alignment.
  6. Tension the V-belt: The correct tension is crucial for optimal V-belt performance. Use a tension gauge to measure the belt’s tension. Follow the manufacturer’s guidelines or recommended tension specifications for the specific V-belt type and application.
  7. Apply tension gradually: Apply tension to the V-belt gradually and evenly. Avoid sudden or excessive tensioning, as it can lead to belt damage or pulley misalignment. Follow the recommended tensioning procedure provided by the manufacturer.
  8. Check the belt tension: After tensioning the belt, recheck the tension using a tension gauge. Ensure that the tension falls within the recommended range for the specific V-belt type and application. Adjust the tension if necessary.
  9. Verify alignment: Confirm that the pulleys are aligned properly. Check for any misalignment or belt tracking issues. Make adjustments as required to ensure the belt runs smoothly and centrally on the pulleys.
  10. Perform a test run: After installation and tensioning, perform a test run of the V-belt system. Monitor the belt’s performance, including proper grip, minimal vibration, and absence of noise. Address any issues or abnormalities promptly.

It is important to refer to the manufacturer’s guidelines and specifications for the specific V-belt type and application. They may provide additional instructions or considerations for installation and tensioning.

By following these steps and adhering to the manufacturer’s recommendations, you can ensure the proper installation and tensioning of a V-belt, leading to optimal performance, reduced wear, and extended belt life.

China OEM CZPT Auto Car V-Ribbed Belt for Benz M272 M273 W204 W203 W212 X164 X204 W251 W221 OE 6pk2398   axle end capsChina OEM CZPT Auto Car V-Ribbed Belt for Benz M272 M273 W204 W203 W212 X164 X204 W251 W221 OE 6pk2398   axle end caps
editor by CX 2024-04-11